BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2019-2020 <u>Course Handout_Part II</u>

Date: 01/08/2019

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No.: CS F320Course Title: Foundations of Data ScienceInstructor-in-charge: NAVNEET GOYAL (goel@)

Catalog Description

Data Science is the study of the generalizable extraction of knowledge from data. Unprecedented advances in digital technology during the second half of the 20th century and the data explosion that ensued in the 21st century is transforming the way we do science, social science, and engineering. Application of data science cut across all verticals. A data scientist requires an integrated skill set spanning mathematics, probability and statistics, optimization, and branches of computer science like databases, machine learning etc.

Text Books:

- T1. Foundations of Data Science Avrim Blum, John Hopcroft, Ravi Kannan, January, 2018
- T2. An Introduction to Data Science Jeffrey Saltz and Jeffrey Stanton, Sage Pubilcations, September 2017

Reference Books:

R1. Christopher M. Bhisop, Pattern Recognition & Machine Learning, Springer, 2006.

Торіс	Topic Details	No. of	Chapter
	-	Lectures	Reference
Course Overview &	1. Motivation/course objectives	2	T1 – Ch. 1
Introduction to Data	2. Some motivating applications		T2 – Ch. 1
Science	3. Tyes of Data		Class Notes +
			web resources
High-dimensional data	1. Characteristics of High-dimensional	6	T1 – Chs. 2, 3
& Curse of	data,		
Dimensionality	2. Curse of Dimensionality (CoD) problem		
	3. Dimensionality Reduction Technique –		
	PCA & SVD		
	4. Tensors		
Big Data & Big Data	1. Big Data - sources & applications	2	T2 – Ch. 20
Analytics	2. Social Media Data		
-	3. Introduction to Big Data Analytics		

LECTURE PLAN

Frequentist vs. Bayesian	1. Frequentist Approach	2	Class Notes +	
approach to Probability	2. Bayesian Approach		https://sites.googl	
	3. Prior to Posterior – Bayes' Theorem		e.com/site/bayestu	
	4. MLE vs. MAP		torial/	
Probability	1. Exponential family of distributions	2	R1 – Ch.2,	
Distributions and	(Bernoulli, Beta, Binomial, Dirichlet,		Appendix B	
Mixture Models	Gamma, & Gaussian)			
	2. Mixture Models – Mixture of Gaussians			
Optimization	1. Unconstrained/Constrained optimization	4	Class Notes	
Techniques	2. Convex Optimization & Lagrange			
	Multipliers			
	3. Quadratic Programming			
	4. Primal/dual			
	5. Kernels			
Data Preparation &	1. Data wrangling techniques	4	T2 - Chs. 5,6	
Modeling	2. Introduction to Data Modeling			
	a. Relational model			
	b. NoSQL models	0.10	T1 Clar	
Nachine Learning	Supervised Learning	8-10	11 - Cns.	
Dasics	1. Linear Regression Models		3,7,9 T2 Ch 18	
	b. Linear basis function models		R1 Chs	
	2 Classification		1389	
	a Naïve Bayes' Classifier		1,5,0,5	
	b Decision Tree Learning			
	c. Logistic Regression			
	d. Artificial Neural Networks			
	c. Support Vector Machines			
	d. Instance-based Classifiers			
	Unsupervised Learning: Clustering			
	1. K-means			
	2. Expectation Minimization			
	Probabilistic Graphical Models (PGM)			
	1. Bayesian Belief Networks (BBN)			
	2. Markov Random Fields (MRF)			
	3. Hidden Markov Models (HMM)			
	Anomaly Detection Techniques			
Time-series Data &	1. Importance & Characteristics of time	4	Class Notes +	
Analytics	series data		web resources	
	2. Sources of time series data			
	3. Time Series analytics	2		
Distributed Computing	1. MapReduce and its variants	2	Class Notes +	
rameworks	2. Spark	4	web resources T2	
Data visualization	1. VISUALIZATION FOUNDATIONS	4	12 - Chs. 12, 13	
	2. visualization Pipeline 3. Scalar Vector & Tonsor Visualization			
	4 Visualization Techniques for Spatial			
	Geospatial & Time-series Data			
	Soosputtur, & Thile Series Data	1		

Evaluation Scheme:

Component	Duration	Weightage	Date (Time)
Midsem Test (Closed Book)	90 Mins.	30%	
Assignments (02)	Take Home	20%	-
Lab. Component	60 Mins.	10%	TBA
Comprehensive Exam (partly open)	3 Hours	40%	11/12 (FN)

Labs. on R: No structured lab. sessions, but students will be provided with Lab. sheets on important topics.

Notices: All notices will be displayed on NALANDA only.

Chamber Consultation Hour: M, W 5.45 to 6.30 pm (6121-K, NAB)

Makeup Policy: To be granted only in case of serious illness or emergency.

NC Policy: Students securing 10% or less marks will get an NC grade. Also, students in the [10-15] bracket are also likely to get NC.

Instructor-in-charge CS F320